Design of standalone (off-grid ) Solar PV Panel with battery storage for one day of autonomy
1. Calculation of the total load of electrical appliances in use and calculation of power consumption in one day.
| Appliances | Rating | Quantity | Hour used per day | Watt Hour per day |
|---|---|---|---|---|
| Light bulb | 3 watts | 3 | 2 | 18 |
| Light bulb | 9 watts | 4 | 5 | 180 |
| Light bulb | 10 watts | 3 | 5 | 150 |
| Light bulb | 40 watts | 1 | 1 | 40 |
| Fan | 75 watts | 5 | 5 | 1875 |
| Television | 75 watts | 1 | 6 | 450 |
| Washing machine | 500 watts | 1 | 0.5 | 250 |
| Refrigerator | 300 watts | 1 | 24 | 7200 |
| Iron press | 500 watts | 1 | 0.5 | 250 |
| Gyser | 2000 watts | 1 | 0.5 | 1000 |
| Microwave oven | 2000 watts | 1 | 0.1 | 200 |
| Mixer gringer | 400 watts | 1 | 0.5 | 200 |
| Heater blower | 1000 watts | 1 | 1 | 1000 |
| Exhaust | 150 watts | 1 | 1 | 150 |
| Total | 7415 watts | 12963 |
2. Calculation of the number of solar PV panels required for power consumption.
First, we need the specifications of the PV module, Battery,
and Inverter :
SPECIFICATIONS
| SPECIFICATIONS | ||
|---|---|---|
| Solar PV Module | Rated Power | 150 W |
| Efficiency | 75% | |
| Combined Efficiency | 81% | |
| Battery | Capacity | 150 Ah |
| Voltage | 12 V | |
| Efficiency | 80% | |
| Inverter | Rating | Available in: |
| 100VA, 200VA, 1000 VA, 1500 VA, 2000 VA, 4000VA | ||
Solar PV sizing
πππ‘ππ πβ πππ‘πππ = πππ‘ππ πππππππ‘ππ ππππ ∗ π»ππ’ππ $= 12963 πβ $
π΄ππ‘π’ππ πππ€ππ ππ’π‘ππ’π‘ ππ ππ πππππ = ππππ πππ€ππ πππ‘πππ ∗ ππππππ‘πππ ππππ‘ππ
$= 150 π ∗ 0.75 = 112.5 π$
πβπ πππ€ππ π’π ππ ππ‘ π‘βπ πππ π’π π = πππ‘π’ππ πππ€ππ ∗ ππππππππ ππππππππππ¦
$= 112.5 ∗ 0.81 = 91.125 π $
πΈπππππ¦ πππππ’πππ ππ¦ πππ 150 π πππππ ππ π πππ¦ = πππ€ππ ππ‘ πππ π’π π $∗ 10β/πππ¦ = 911.25 πβ$
ππ. ππ ππ ππππππ ππππ’ππππ = πππ‘ππ πβ πππ‘πππ πππππ¦ ππππππ¦ πππππ’πππ ππ¦ π πππππ
$= \frac{12963}{911.25}$ $= 14.225 ≈ 15$
It is recommended to install 15 PV modules
3. Calculation of number of battery storage required for one day of autonomy
$Battery\:Capacity(Ah)=\frac{(\frac{Total\:Wh}{day} )\times{Days\:of\:autonomy}}{(battery\:combined\:efficency)\times(battery\:voltage)}\\\:\quad\:\quad\:\quad\:\quad\:\quad\:\quad=\frac{12963\times1}{0.8\times0.9\times12}=1500.34\:Ah\\Number\:of\:batteries\:required=\frac{Battery\:capacity}{Battery\:rating}=\frac{1500.34}{150}=10$
It is recommended to install 10 numbers of 150 Ah batteries.
Battery rating can be more or less.
4. Calculation the number of inverters.
$Inverter\:rating(W\:or\:VA)=Total\:connected\:load\:to\:PV\:panal\:system=7415\:W\\ No.\:of\:Inverters=\frac{Total\:connected\:load\:to\:PV\:panal}{Inverter rating}=\frac{7415}{4000}=1.853\thickapprox2$
5. Calculation of total cost.
$Cost\:of\:arrays=No.\:of\:PV\:module\times cost\:per\:module=15\times 6000=90000\\ Cost\:of\:batteries=No.\:of\:batteries\times cost\:per\:battery=10\times 15000=150000\\ Cost\:of\:Inverters=No.\:of\:inverters\times cost\:per\:inverter=2\times 18000=36000\\ Total\:cost\:of\:system=cost\:of\:arrays+cost\:of\:batteries+cost\:of\:inverters=90000+150000+36000=276000\\ 5\% \:additional\:cost\:of\:wiring=\frac{5}{100}\times 276000=13800\\ The\:final\:cost\:of\:the\:system=276000+13800=289800$

0 comments:
Post a Comment