Design of standalone (off-grid ) Solar PV Panel with battery storage for one day of autonomy
1. Calculation of the total load of electrical appliances in use and calculation of power consumption in one day.
Appliances | Rating | Quantity | Hour used per day | Watt Hour per day |
---|---|---|---|---|
Light bulb | 3 watts | 3 | 2 | 18 |
Light bulb | 9 watts | 4 | 5 | 180 |
Light bulb | 10 watts | 3 | 5 | 150 |
Light bulb | 40 watts | 1 | 1 | 40 |
Fan | 75 watts | 5 | 5 | 1875 |
Television | 75 watts | 1 | 6 | 450 |
Washing machine | 500 watts | 1 | 0.5 | 250 |
Refrigerator | 300 watts | 1 | 24 | 7200 |
Iron press | 500 watts | 1 | 0.5 | 250 |
Gyser | 2000 watts | 1 | 0.5 | 1000 |
Microwave oven | 2000 watts | 1 | 0.1 | 200 |
Mixer gringer | 400 watts | 1 | 0.5 | 200 |
Heater blower | 1000 watts | 1 | 1 | 1000 |
Exhaust | 150 watts | 1 | 1 | 150 |
Total | 7415 watts | 12963 |
2. Calculation of the number of solar PV panels required for power consumption.
First, we need the specifications of the PV module, Battery,
and Inverter :
SPECIFICATIONS
SPECIFICATIONS | ||
---|---|---|
Solar PV Module | Rated Power | 150 W |
Efficiency | 75% | |
Combined Efficiency | 81% | |
Battery | Capacity | 150 Ah |
Voltage | 12 V | |
Efficiency | 80% | |
Inverter | Rating | Available in: |
100VA, 200VA, 1000 VA, 1500 VA, 2000 VA, 4000VA |
Solar PV sizing
πππ‘ππ πβ πππ‘πππ = πππ‘ππ πππππππ‘ππ ππππ ∗ π»ππ’ππ $= 12963 πβ $
π΄ππ‘π’ππ πππ€ππ ππ’π‘ππ’π‘ ππ ππ πππππ = ππππ πππ€ππ πππ‘πππ ∗ ππππππ‘πππ ππππ‘ππ
$= 150 π ∗ 0.75 = 112.5 π$
πβπ πππ€ππ π’π ππ ππ‘ π‘βπ πππ π’π π = πππ‘π’ππ πππ€ππ ∗ ππππππππ ππππππππππ¦
$= 112.5 ∗ 0.81 = 91.125 π $
πΈπππππ¦ πππππ’πππ ππ¦ πππ 150 π πππππ ππ π πππ¦ = πππ€ππ ππ‘ πππ π’π π $∗ 10β/πππ¦ = 911.25 πβ$
ππ. ππ ππ ππππππ ππππ’ππππ = πππ‘ππ πβ πππ‘πππ πππππ¦ ππππππ¦ πππππ’πππ ππ¦ π πππππ
$= \frac{12963}{911.25}$ $= 14.225 ≈ 15$
It is recommended to install 15 PV modules
3. Calculation of number of battery storage required for one day of autonomy
$Battery\:Capacity(Ah)=\frac{(\frac{Total\:Wh}{day} )\times{Days\:of\:autonomy}}{(battery\:combined\:efficency)\times(battery\:voltage)}\\\:\quad\:\quad\:\quad\:\quad\:\quad\:\quad=\frac{12963\times1}{0.8\times0.9\times12}=1500.34\:Ah\\Number\:of\:batteries\:required=\frac{Battery\:capacity}{Battery\:rating}=\frac{1500.34}{150}=10$
It is recommended to install 10 numbers of 150 Ah batteries.
Battery rating can be more or less.
4. Calculation the number of inverters.
$Inverter\:rating(W\:or\:VA)=Total\:connected\:load\:to\:PV\:panal\:system=7415\:W\\ No.\:of\:Inverters=\frac{Total\:connected\:load\:to\:PV\:panal}{Inverter rating}=\frac{7415}{4000}=1.853\thickapprox2$
5. Calculation of total cost.
$Cost\:of\:arrays=No.\:of\:PV\:module\times cost\:per\:module=15\times 6000=90000\\ Cost\:of\:batteries=No.\:of\:batteries\times cost\:per\:battery=10\times 15000=150000\\ Cost\:of\:Inverters=No.\:of\:inverters\times cost\:per\:inverter=2\times 18000=36000\\ Total\:cost\:of\:system=cost\:of\:arrays+cost\:of\:batteries+cost\:of\:inverters=90000+150000+36000=276000\\ 5\% \:additional\:cost\:of\:wiring=\frac{5}{100}\times 276000=13800\\ The\:final\:cost\:of\:the\:system=276000+13800=289800$
0 comments:
Post a Comment